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Motivation

e EXxplanations are fragile to adversarial attacks [1], [2].

e What about naturally occuring perturbations?

e |nvariant methods (changes in brightness, saturation and hue):
The explanation of the augmented image should be the same
as the explanation of the original image.

e Equivariant methods (rotation, translation and scaling):

The explanation of the augmented image should be the same
as the augmented explanations of the original image.

Assumption

If a transformation of an image does not change the target
class, the explanation should assign importance to the same
part of the object as in the untransformed image.

Methods

* Intervals for augmentations are chosen so that the classification
performance was reduced by 10%.

e Compare predictions (probability of the target class) and
correlation of the explanations.

e We define a score S(correlation, probability) as a quotient of
AUC(correlation) and AUC(probability)

e S(correlation, probability) < 1: explanatlons are less robust than
predictions. 1
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e Compare models trained with full ("full aug") and limited
("lilm aug") data augmentation.
e ResNet50 in the paper but similar results for EfficientNetV2 and

VGG16.
e Compare stability of explanations and faithfulness (pixel flipping).
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LRP EpsilonPlusFlat

|LRP EpsilonPlusFlat

Brightness | Hue Saturation || Rotate | Scale | Translate
Gradients 0.468 0.442 | 0.354 0.127 | 0.122 | 0.246
Input x Gradients 0.330 0.443 | 0.343 0.126 | 0.120 | 0.245
Integrated Gradients 0.478 0.636 | 0.546 0.209 | 0.229 | 0.327
Guided Backprop 1.005 1.028 | 0.994 0819 | 0.866 | 0.875
Deconvolution 0.975 1.014 | 0.975 0.434 | 0.437 | 0.449
LRP: EpsilonPlusFlat 0.923 1.053 | 1.038 0.796 | 0.834 | 0.792
LRP: EpsilonGammaBox 0.632 0.856 | 0.832 0.480 | 0.512 | 0.532
LRP: EpsilonAlpha2BetalFlat || 0.662 1.006 | 0.972 0.691 | 0.722 | 0.706
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Conclusion

LRP composites and Guided Backprop produce are the most stable.
e Gradients and Input x Gradients are the least stable.

e |nvariant (changes in brightness, hue and saturation) more stable
than equivariant (rotation, translation, scaling).

Training with data augmentation does not reduce this problem.
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