Connecting Concept Convexity and Human-Machine Alignment in Deep Neural Networks

Teresa Dorszewski¹, Lenka Tětková¹, Lorenz Linhardt^{2,3}, Lars Kai Hansen¹

¹Technical University of Denmark, ²Technische Universität Berlin, ³Berlin Institute for the Foundations of Learning and Data – BIFOLD

Motivation

Measures of human-likeness of neural network representations are often derived from cognitive science and quantify a similarity in the representational structure of humans and neural networks. In recent years, a variety of measures has been proposed. In this work, we ask what the relationship between two of these measures, **graph convexity** and **odd-one-out accuracy**, is.

Methods

Convexity

3.

4.

a

Graph convexity score [2]:

Human-Machine Alignment Odd-one-out accuracy (OOOA) [1]

 \cap \cap \cap \cap

Any relationship of those measures is conceivable. What is their relationship in real DNNs?

- High correlation may indicate that the same underlying property is measured.
- Low correlation opens the question of what aspects of human likeness each measure quantifies.

Closest pair: max cosine similarity

Graph Convexity

DTU

UNIVERSITÄT

BIFOLD

Graph convexity of THINGS classes

in path belonging to same class

Extract representations of data

For all pairs in one class, find shortest path

Graph convexity score: avg. proportion of points

2. Build nearest-neighbors graph

Results

High Correlation (Fig c)

- High correlation of convexity and OOOA in early layers
- Different trends for pretrained and finetuned models

Observation on OOOA (Fig b)

Highest OOOA in the middle layers
 current research focuses on late layers

Impact of Increasing Human Alignment

 Increasing human-alignment using a latent space transform [3] generally increases convexity in pretrained models

Models + Layers	Change in OOOA	Change in Convexity
Pretrained First	+ 4.9 ± 1.4	+ 1.7 ± 1.4
Pretrained Middle	+ 9.7 ± 3.2	+ 0.4 ± 2.6
Pretrained Last	+ 13.7 ± 1.0	+ 3.1 ± 2.5
Finetuned First	+ 5.0 ± 1.4	+ 1.5 ± 1.4
Finetuned Middle	$+9.1 \pm 1.4$	- 2.2 ± 1.6
Finetuned Last	+ 14.1 ± 4.4	- 2.5 ± 3.3

Conclusion and Outlook

Complex relationship between latent space geometries (convexity) and human-machine alignment (OOOA)

 Increasing convexity via finetuning does not necessarily lead to higher alignment

Future research directions:

- Enhancement of convexity and human-machine alignment
 → more aligned and generalizing models
- Investigation of factors influencing convexity and OOOA
 - (pre)training strategy
 - model architecture
 - training data

