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Motivation Results

Models encode information in different layers:
- Word meaning in later layers

- Speaker information in early layers
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Investigation of 4 self-supervised speech representation models Finetuning after convexity-informed pruning leads to comparable
- Wav2vec?2 [1], wavLM [2], HUBERT [3], ccc-wav2vec [4] accuracy while significantly reducing training and inference time
- ,.AII m.o.dels. are trained to perform word classification and speaker Word Speaker
identification on speech commands v0.02 [5] classification  identification
Change in
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Convexity: | Graph Convexity fime - 23.4% -47.8%
Evaluate graph convexity [6] of words, speakers before |
and after finetuning: e ¢ Inf(;:]eanncg:tlirr]ne - 95 9% _58.7%
1. Extract latent representations of all input data ® ®
2. Build graph with nearest neighbors and distances ® 9 o
3. For all pairs within one class, find shortest path o ©° .
through neighbors ../ Conclusion
4. Avg. proportion of points in path belonging to e ©°®
same class is the graph convexity score
Models process speaker
information early
Pruning: and word content Informed pruning can reduce
- Prune pretrained models, finetune the pruned model in the middle computational resources while
- Delete all layers after the layer with highest convexity score maintaining performance
- For word classification: Layer 8/15
- For speaker identification: Layer 2/4
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