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Workflows

In cognitive sciences, it has been shown that: Definition 1 (Euclidean convexity). A subset S C RP is convex iff

VX, y €SVte|[0 1] z(t)=tx+ (1 —tlyisalsoin S
Definition 3 (Graph convexity, see e.g., [5]). Let (V, E) be a graph and A € V. We
say that A is convex if for all pairs x, y € A, there exists a shortest path

> Natural concepts form convex regions in human geometrical

representations [1, 2].

> (Convexity is closely related to generalization in cognitive systems [3, 4]. P=(x=v,, V., V,,...,V_.,y=v_)and Vi€ {0,...,n}:v € A
> Convexity supports few-shot learning [3]. > Euclidean is the “classical” convexity, graph convexity is relevant for data on
curved manifolds, resembles connectivity.
machine-learned representations as well? > Five modalities: images, text, audio, human activity recognition, medical
Images.
Does higher convexity in a pretrained model create a
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Recall vs. graph convexity
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Figure 4: Euclidean and graph convexity scores for all modalities for decision regions of pretrained and fine-tuned — i
networks. Decision regions are determined by model-predicted labels. Prediction in pretrained models is found using a O 40 - ;
softmax probe, training only the softmax linear layer. In fine-tuning, we train the whole network and softmax output. We find X
pervasive convexity in all networks and convexity further increases following fine-tuning. The number of layers differs 20 - i
across models but the most-left layer is the first layer that we observe and the right-most layer is the last layer in each
model. Error bars are omitted in this plot for clarity (uncertainty estimates are given in figures of individual modalities in 0 -

Appendices C.1-C.5). Note that the results are not directly comparable across modalities (see Section 2.1). In particular, = 5

we find less convexity in the image data containing a high number of classes (C=1000). 0 20 | 40 60 80 100
Convexity in % (mean over all layers)

. Figure 5. Graph convexity (top) and Euclidean convexity (bottom) of a subset of classes in
Co nclu S | o ns the pretrained models vs. recall rate of these individual classes in the fine-tuned models for
all data domains. The number of points for each domain is equal to the number of classes in

this domain (except for images, where we take only a subset of classes for clarity — all

> COHVEXity emerges dCross networks. Image classes are shown in and Figure 9 and Figure 10 in Appendix C). The Pearson
. . . . correlation coefficient is 0.22 + 0.06 for graph convexity and 0.24 + 0.06 for Euclidean
> Flne-tunlng INcreases co HVEXIty. convexity (the confidence intervals are computed using Fisher transformation).

> Higher convexity in pre-trained model —— Better performance
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