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In cognitive sciences, it has been shown that:

➢ Natural concepts form convex regions in human geometrical 

representations [1, 2].

➢ Convexity is closely related to generalization in cognitive systems [3, 4].

➢ Convexity supports few-shot learning [3].

Are decision regions implemented as convex regions in 
machine-learned representations as well?

Definition 1 (Euclidean convexity). A subset S ⊂ ℝD is convex iff 
∀x, y ∈ S ∀t ∈ [0, 1], z(t)= tx+ (1 − t)y is also in S
Definition 3 (Graph convexity, see e.g., [5]). Let (V, E) be a graph and A ⊆ V . We 
say that A is convex if for all pairs x, y ∈ A, there exists a shortest path 
P = (x=v0 , v1 , v2 , . . . , vn−1 , y=vn ) and ∀i ∈ {0, . . . , n} : vi ∈ A.

➢ Euclidean is the “classical” convexity, graph convexity is relevant for data on 

curved manifolds, resembles connectivity.

➢ Pretrained and fine-tuned models.

➢ Five modalities: images, text, audio, human activity recognition, medical 
images.

Does higher convexity in a pretrained model create a 
higher potential for generalizability (i.e., better 

performance)?

Motivation

Results

Workflows

➢ Convexity emerges across networks.

➢ Fine-tuning increases convexity.

➢ Higher convexity in pre-trained model  Better performance 

of the fine-tuned model.
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Figure 5. Graph convexity (top) and Euclidean convexity (bottom) of a subset of classes in 
the pretrained models vs. recall rate of these individual classes in the fine-tuned models for 
all data domains. The number of points for each domain is equal to the number of classes in 
this domain (except for images, where we take only a subset of classes for clarity – all 
image classes are shown in and Figure 9 and Figure 10 in Appendix C). The Pearson 
correlation coefficient is 0.22 ± 0.06 for graph convexity and 0.24 ± 0.06 for Euclidean 
convexity (the confidence intervals are computed using Fisher transformation).

Figure 4: Euclidean and graph convexity scores for all modalities for decision regions of pretrained and fine-tuned 
networks. Decision regions are determined by model-predicted labels. Prediction in pretrained models is found using a 
softmax probe, training only the softmax linear layer. In fine-tuning, we train the whole network and softmax output. We find 
pervasive convexity in all networks and convexity further increases following fine-tuning. The number of layers differs 
across models but the most-left layer is the first layer that we observe and the right-most layer is the last layer in each 
model. Error bars are omitted in this plot for clarity (uncertainty estimates are given in figures of individual modalities in 
Appendices C.1-C.5). Note that the results are not directly comparable across modalities (see Section 2.1). In particular, 
we find less convexity in the image data containing a high number of classes (C=1000).


